Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 115(5): 942-958, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33513291

RESUMO

Trypanosoma and Leishmania parasites cause devastating tropical diseases resulting in serious global health consequences. These organisms have complex life cycles with mammalian hosts and insect vectors. The parasites must, therefore, survive in different environments, demanding rapid physiological and metabolic changes. These responses depend upon regulation of gene expression, which primarily occurs posttranscriptionally. Altering the composition or conformation of RNA through nucleotide modifications is one posttranscriptional mechanism of regulating RNA fate and function, and modifications including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and pseudouridine (Ψ), dynamically regulate RNA stability and translation in diverse organisms. Little is known about RNA modifications and their machinery in Trypanosomatids, but we hypothesize that they regulate parasite gene expression and are vital for survival. Here, we identified Trypanosomatid homologs for writers of m1A, m5C, ac4C, and Ψ and analyze their evolutionary relationships. We systematically review the evidence for their functions and assess their potential use as therapeutic targets. This work provides new insights into the roles of these proteins in Trypanosomatid parasite biology and treatment of the diseases they cause and illustrates that Trypanosomatids provide an excellent model system to study RNA modifications, their molecular, cellular, and biological consequences, and their regulation and interplay.


Assuntos
Transcriptoma , Trypanosoma/genética , Tripanossomíase/parasitologia , Animais , Epigenômica , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma/enzimologia , Trypanosoma/metabolismo
2.
Int J Mol Sci ; 21(10)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455951

RESUMO

Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi, affecting more than 7 million people in the world. Benznidazole and nifurtimox are the only drugs available for treatment and in addition to causing several side effects, are only satisfactory in the acute phase of the disease. Sirtuins are NAD+-dependent deacetylases involved in several biological processes, which have become drug target candidates in various disease settings. T. cruzi presents two sirtuins, one cytosolic (TcSir2rp1) and the latter mitochondrial (TcSir2rp3). Here, we characterized the effects of human sirtuin inhibitors against T. cruzi sirtuins as an initial approach to develop specific parasite inhibitors. We found that, of 33 compounds tested, two inhibited TcSir2rp1 (15 and 17), while other five inhibited TcSir2rp3 (8, 12, 13, 30, and 32), indicating that specific inhibitors can be devised for each one of the enzymes. Furthermore, all inhibiting compounds prevented parasite proliferation in cultured mammalian cells. When combining the most effective inhibitors with benznidazole at least two compounds, 17 and 32, demonstrated synergistic effects. Altogether, these results support the importance of exploring T. cruzi sirtuins as drug targets and provide key elements to develop specific inhibitors for these enzymes as potential targets for Chagas disease treatment.


Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/parasitologia , Histona Desacetilases do Grupo III/antagonistas & inibidores , Concentração Inibidora 50 , Macaca mulatta , Simulação de Acoplamento Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuínas/química , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade
3.
Biochem J ; 477(9): 1733-1744, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32329788

RESUMO

Post-translational modifications provide suitable mechanisms for cellular adaptation to environmental changes. Lysine acetylation is one of these modifications and occurs with the addition of an acetyl group to Nε-amino chain of this residue, eliminating its positive charge. Recently, we found distinct acetylation profiles of procyclic and bloodstream forms of Trypanosoma brucei, the agent of African Trypanosomiasis. Interestingly, glycolytic enzymes were more acetylated in the procyclic, which develops in insects and uses oxidative phosphorylation to obtain energy, compared with the bloodstream form, whose main source of energy is glycolysis. Here, we investigated whether acetylation regulates the T. brucei fructose 1,6-bisphosphate aldolase. We found that aldolase activity was reduced in procyclic parasites cultivated in the absence of glucose and partial recovered by in vitro deacetylation. Similarly, acetylation of protein extracts from procyclics cultivated in glucose-rich medium, caused a reduction in the aldolase activity. In addition, aldolase acetylation levels were higher in procyclics cultivated in the absence of glucose compared with those cultivated in the presence of glucose. To further confirm the role of acetylation, lysine residues near the catalytic site were substituted by glutamine in recombinant T. brucei aldolase. These replacements, especially K157, inhibited enzymatic activity, changed the electrostatic surface potential, decrease substrate binding and modify the catalytic pocket structure of the enzyme, as predicted by in silico analysis. Taken together, these data confirm the role of acetylation in regulating the activity of an enzyme from the glycolytic pathway of T. brucei, expanding the factors responsible for regulating important pathways in this parasite.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Glicólise/fisiologia , Lisina/metabolismo , Trypanosoma brucei brucei/metabolismo , Acetilação , Animais , Microcorpos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo
4.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987092

RESUMO

Benznidazole and nifurtimox, the only drugs available for the treatment of Chagas disease, have limited efficacy and have been associated with severe adverse side effects. Thus, there is an urgent need to find new biotargets for the identification of novel bioactive compounds against the parasite and with low toxicity. Silent information regulator 2 (Sir2) enzymes, or sirtuins, have emerged as attractive targets for the development of novel antitrypanosomatid agents. In the present work, we evaluated the inhibitory effect of natural compounds isolated from cashew nut (Anacardium occidentale, L. Anacardiaceae) against the target enzymes TcSir2rp1 and TcSir2rp3 as well as the parasite. Two derivates of cardol (1, 2), cardanol (3, 4), and anacardic acid (5, 6) were investigated. The two anacardic acids (5, 6) inhibited both TcSir2rp1 and TcSir2rp3, while the cardol compound (2) inhibited only TcSir2rp1. The most potent sirtuin inhibitor active against the parasite was the cardol compound (2), with an EC50 value of 12.25 µM, similar to that of benznidazole. Additionally, compounds (1, 4), which were inactive against the sirtuin targets, presented anti-T. cruzi effects. In conclusion, our results showed the potential of Anacardium occidentale compounds for the development of potential sirtuin inhibitors and anti-Trypanosoma cruzi agents.


Assuntos
Anacardium/química , Extratos Vegetais/farmacologia , Sirtuínas/antagonistas & inibidores , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Testes de Sensibilidade Parasitária , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA